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Non-linear free vibration of hinged orthotropic circular plates with a concentric rigid
mass at the centre is studied by using the finite element method. Hamilton’s principle is
applied to derive the basis non-linear partial differential equations and associated boundary
conditions for the problem of large amplitude of an orthotropic circular plate. The
applications of the finite element method to the dynamic problem rely on the use of a
variation principle to derive the necessary element property’s equations. The assembled
equations for the plate are formed by summing each of the element equations obtained in
consideration of a single element. Then, the boundary conditions are imposed on the vector
of nodal field variables, so that the appropriate boundary conditions are satisfied. The
assembled equations form an eigenvalue problem and are solved for the unknown field
variables. The relations between the fundamental frequencies and the amplitudes of
non-linear vibrations of the circular orthotropic elastic plate with a rigid core are obtained.
The results show that the frequency responses of the plate varies with changes of boundary
conditions and the ratio between tangential and radial elastic constant.
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1. INTRODUCTION

Anisotropic materials play an important role in modern technology. Many new anisotropic
materials, such as reinforced plastics and composite materials, are being used in such fields
as missiles, aircraft, space vehicles, pressure vessels and parts of structures to meet the
special requirements. Since vibrations may be disastrous, reliable predications of their
nature are of great importance. The vibration amplitude of sufficient magnitude may result
in malfunction of delicate components.

According to von Karman’s theorem, when the amplitude of vibration is the same order
of magnitude as the thickness of the plate, its dynamic equations are non-linear and
coupled. Due to the complexity of the governing equations, it is very difficult to obtain
the exact analysis solutions. Thus approximate methods of analysis must be used [1].

Large amplitude vibrations of an isotropic circular plate, which has a concentric rigid
mass at the centre and the same boundary conditions, have been studied by several authors
[2, 3]. The solutions for the problem are obtained by using Kantorovich’s averaging
method. The authors also solved the problem by the finite element method and the results
are similar to those by the Kantorovich averaging method [4]. However, the addition of
a concentric rigid mass attached rigidly to the orthotropic circular plate has received
limited attention [5].
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The present investigation is concerned with the axisymmetric non-linear vibrations of
a hinged orthotropic circular plate with a concentric rigid mass, using the finite element
method. By the variational principle the element equations are derived and the assembled
equations for the plate are formed by summing each of the element equations. A non-linear
eigenvalue problem is formed. Numerical solutions are obtained for the stated problem.
Free vibrations of the hinged movable and immovable plate–mass are investigated for
various orthotropic ratios, and corresponding fundamental frequencies are presented.

2. DERIVATION OF BASIC DIFFERENTIAL EQUATIONS

Consider a thin circular plate with a concentric rigid mass Mc as shown in Figure 1. The
outer radius of the plate is a and constant thickness is h. The radius of the rigid mass is
b and equals the inner radius of the plate. Let the origin of the polar co-ordinates (r, u, z)
be located at the centre of the middle plane. The plate material is assumed to be elastic,
homogenous and cylindrical orthotropic.

The radial and circumferential strain–displacement relations derived from large
deflection theory are as follows:

or = ur + 1
2w

2
r − z · wrr , ou =

u
r
−

z
r
wr , (1)

where u(r, t) and w(r, t) denote the radial and transverse components of the mid-plane
displacement, respectively, while subscripts denote partial derivatives. The strain–stress
relations in the polar co-ordinate system are:

or = ar · sr + aru · su , ou = aru · sr + au · su, (2)

where su and sr are normal stresses in the tangential and raidal directions, respectively,
the coefficients au , aru and ar are the elastic constants, and the variables ou and or are normal
strains in the tangential and radial directions, respectively. The stress–strain in equations
(2) can be represented in the form:

$sr

su%=
12 · D
c · h3 · $cn n

1% · $or

ou% . (3)

Here c= au /ar , n=−aru /ar and D=((au · h3)/12 · (au · ar − a2
ru )) are defined, where c is

elastic constant ratio, n is the Poisson ratio and D is the flexural rigidity of the plate.

Figure 1. A circular plate with a concentric rigid mass and hinged boundary conditions.
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By Hamilton’s principle, it can be shown that, when an orthotropic circular plate with
a concentric rigid mass at the centre undergoes finite amplitude axisymmetric vibration,
the non-dimensional motion equations are as follows:

Xtt + c · Xjjjj +
2 · c
j

Xjjj −
1
j2 Xjj +

1
j3 Xj

=
12 · a

h 0cj · Uj · Xj + c · Ujj · Xj + c · Uj · Xjj

+
c
2

·
a
h

·
1
j

· X3
j +

3 · c
2

·
a
h

· X2
j · Xjj +

n

j
· U · Xjj +

n

j
· Uj · Xj1 , (4)

c · Ujj +
c
j

· Uj + c ·
a
h

· Xj · Xjj +
c
2

·
a
h

·
1
j

· X2
j −

1
j2 · U−

n

2
·
a
h

·
1
j

· X2
j =0. (5)

The following non-dimensional variables

X=
w
a

, j=
r
a

, R=
b
a

, g=
Mc

p · b2 · r · h
U =

u
h

t= t · $ D
r · h · a4%

1/2

,

have been used to transform the governing equations of motion and boundary conditions
into the non-dimensional form. The derivation of the equations is shown in Appendix B.
Let c=1·0, or au = ar =1/E and aru =−n/E, where E is the material Young’s modulus,
equations (4) and (5) degenerate into the basic equations for the oscillation of an isotropic
circular plate [4]. The associated boundary conditions in non-dimensional form are as
follows.

In the case of hinged movable at the end j=1

X=0, c · Xjj +
n

j
· Xj =0, c · Uj +

n

j
· U+

c
2

·
a
h

· X2
j =0. (6a)

In the case of hinged immovable at the end j=1

X=0, U=0, c · Xjj +
n

j
· Xj =0. (6b)

In both cases at the end connected with rigid mass j=R

Xj =0, U=0, j · 0c · Xjjj +
c
j

· Xjj −
1
j2 · Xj1

−
12 · a

h
· j · Xj · 0c · Uj +

c
2

·
a
h

· X2
j +

n

j
· U1+

1
2

· g · R2 ·
12X
1t2 =0. (6c)

3. FINITE ELEMENT ANALYSIS

An exact solution to the problem defined by equations (4)–(6) is at present unknown.
Thus, the analysis of the problem is accomplished by numerical approaches. To solve
problems of vibration with large amplitude there are several approximate methods such
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as the finite element method [4, 5] and Kantorovich’s averaging method [2]. In this
investigation the problem is studied by using the finite element method.

Since the plate problems considered herein, as shown in Figure 1, are axisymmetric, the
ring elements are chosen. The normalized region of the plate [R, 1] is divided into n
elements of width 2s, where s=(1−R)/2n. Each element has three nodes, which are two
exterior nodes and one interior node. Each nodal point has three degrees of freedom
(X, Xj , U), representing the transverse defletion X, slope Xj , and the in-plane displacement
U at the jth nodal point of the ith element. The values of displacements and slopes within
ith element are expressed as

{X(e)(j, t)}=[N(e)] · {W(e)}, {U(e)(j, t)}=[L(e)] · {V(e)} (7a, b)

where {W(e)} and {V(e)} are nodal variable vectors, defined as

{W(e)}T =(X(j), X(j)j , X(j+1), X(j+1)j , X(j+2), X(j+2)j ),

{V(e)}T =(U(j), U(j+1), U(j+2)).

Also [N(e)] and [L(e)] are row vectors of shape functions that play a more important role
in all finite element analysis. Hermitian functions are used for interpolation, and then
shape functions are

3/4 −1/2 −5/4 1 0 0 X5

1/4 −1/4 −1/4 1/4 0 0 X4

0 1 0 −2 0 1 X3G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

[N(e)]=
1 0 −2 0 1 0

·
X2

(8a)

−3/4 −1/2 5/4 1 0 0 X1

1/4 1/4 −1/4 −1/4 0 0 X0

[L(e)]= &1/2
−1
1/2

−1/2
0

1/2

0
1
0' · &X2

X1

X0'.
Their derivations are shown in the appendices of reference [4].

If the whole domain of the plate contains n elements, the representation of the field
variable over the whole plate is given by

X(j, t)= s [N(e)
j ] · {W(e)

j }=NTW, U(j, t)= s [L(e)
j ] · {V(e)

j }=LTV (9a, b)

where vector

WT =(X(1), X(1)j , X(2), X(2)j , . . . , X(2n+1), X(2n+1)j ),

represents the unknown nodal values of the transverse deflections and slope, and where
vector

VT =(U(1), U(2), . . . , U(2n+1)),

represents the unknown nodal value of the in-plane displacements.
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Consider the strain–displacement relations for an elastic media with large deformations
(von Karma’s plate theory). The strain vector {o} is expressed as

ur
1
2 · w2

r

u/r 0 o'p o0p
G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l
{o}= · · · + · · · = · · · + · · ·

−wrr 0 ob 0

−wr /r 0

= {o'}+ {o0}, (10)

where vectors {o'} and {o0} are linear and non-linear strain vectors, respectively. The
non-dimensional forms of the strain parts o'p , o0p and ob are

o'p =
h0

a $ Uj

U/j% , ob =
−1
a $ Xjj

Xj /j% , o0p =$X2
j /2
0 % . (11)

For an orthotropic elastic material, the elastic constant matrix is

C=$Cp

0
0
Cb% , (12)

where

Cp =
12 · D
c · h3 C1, Cb =

12 · D · z2

c · h3 C1, C1 =$cy y

1% ,

and z is the distance from the middle plane along the thickness direction of the plate. To
establish the global stiffness and mass matrices, the potential energy and kinetic energy
are determined. By using equations (9)–(12), the total strain energy for the plate is obtained
as

P=
1
2

· g[

oT · C · o · dv

=
1
2

· g[

o'T · C · o' · dv+
1
2

· g[

(o'T · C · o0+ o0T · C · o'+ o0T · C · o0) · dv

=P'+P0, (13)

in which the first term is a quadratic function representing the linear part of the strain
energy, the second term is the non-linear part of the strain energy and dv is the volume
unit.

After substitution of equations (11) and (12) into equation (13), and integration through
the thickness of the plate h, the linear and non-linear parts of strain energy can be written
as

P'=
1
2

·
12 · D
c · h2 gg o'Tp · C1 · o'p · ds+

1
2

·
D
c gg oT

b · C1 · ob · ds, (14a)
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P0=
1
2

·
12 · D
c · h2 gg (o'Tp · C1 · o0p + o0Tp · C1 · o'p + o0T

p · C1 · o0p ) · ds, (14b)

After substitution of equations (9a) and (b) into equation (11), the strain parts appearing
in equation (14) can be written as

o'p =
h0

a $ LT
j

LT/j% · V, ob =−
1
a $ NT

jj

NT
j /j% · W, o0p =$1

2X
2
j

0 % . (15)

Thus, their first variations are

do'p =
h0

a $ LT
j

LT/j% · dV, dob =−
1
a $ NT

jj

NT
j /j% · dW,

do0p =$Xj

0 % · NT
j · dW. (16)

Now, the first variation of the total strain energy is

dV T 12 · D
c

Kp 0 V

G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l
dP=

dW
·

0
D
c

Kb

·
W

dV T 0
12 · D
c · h

K'p V

G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l
+

dW
·

6 · D · a
c · h

K'Tp
12 · D · a2

c · h2 K0p
·

W
, (17)

where

Kp =gg 0c · Lj · LT
j +

v
j

L · LT
j +

v
j

Lj · LT +
1
j2 L · LT1 · ds,

Kb =gg 0c · Njj · NT
jj +

v
j

Njj · NT
j +

v
j

Nj · NT
jj +

1
j2 Nj · NT

j1 · ds,

K'p =gg (Xj ) · 0c · Lj +
v
j

L1 · NT
j · ds,

K0p =gg (1
2X

2
j ) · (c · Nj · NT

j ) · ds.

The total kinetic energy of the plate can be determined as

1V
1t

T

0 0
1V
1tG

G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l
T=

1
2

·
1W
1t

·
0

D
c

M
·

1W
1t

, (18)
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where

M=gg N · NT · ds+ g · p · R2 · (N · NT)=j=R .

By applying Hamilton’s principle, Euler–Lagrange equations for the plate can be
obtained and written in the matrix form

0 0
12V
1t2

12 · D
c

Kp 0 V

G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l0
D
c

M
·

12W
1t2

+
0

D
c

Kb

·
W

0
12 · D

c
·
a
h

K'p V
G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l
+

12 · D
c

·
a
h

·
1
2

K'Tp
12 · D

c
·
a2

h2 · K0p
·

W
=0,

or in a reduced form as

Kp · V+
a
h

· K'p · W=0

M ·
12W
1t2 +Kb · W+12 ·

a
h

·
1
2

· K'Tp · V+12 ·
a2

h2 · K0p · W=0. (19)

Equations (19) are the motion equations describing the non-linear free vibrations of an
orthotropic circular plate with a concentric rigid mass. The following boundary conditions
are imposed on equations (19) in the case of (a) hinged–movable,

VT =(0, U(2), U(3), . . . , U(2n−1), U(2n)),

WT =(X(1), 0, X(2), X(2)j , . . . , X(2n−1), X(2n−1)j , 0, X(2n)j ), (20a)

(b) hinged–immovable,

VT =(0, U(2), U(3), . . . , U(2n−1), 0),

WT =(X(1), 0, X(2), X(2)j , . . . , X(2n−1), X(2n−1)j , 0, X(2n)j ). (20b)

Because of the boundary conditions the coefficient matrices of vector W and vector V must
be properly modified so that the original matrices remain unchanged.

4. NUMERICAL COMPUTATION

To determine the responses of non-linear vibrations of the circular plate, or to obtain
the solutions of equations (19) and (20), the computational iteration procedure must be
used, which is shown in reference [4].

Figures 2 and 3 present the results determined for hinged movable and immovable
non-linear free vibrations with various values of stiffness parameter (c=0·5, 1·0, and 2·0)
at radius (R=0·1). At the same amplitude, the resonant oscillation frequency of the system
material with a higher stiffness parameter is higher than those with a lower stiffness
parameter. The phenomenon shows that the effects of the elastic constant in the tangential
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Figure 2. Non-linear free frequency responses of the annular plate with elastic constant ratio (c=0·5, 1·0 and
2·0), mass ratio (g=1·0) and radius ratio (R=0·1) under hinged immovable boundary conditions.

direction upon oscillation frequency are higher than those in the radial direction. From
shapes of the response curves in Figures 2 and 3, it seems that responses of the plate–mass
system are similar to those of the hard-spring Duffing system. The results of Figure 4 show
how the effects ofthe edge constraints influence the response of the plate–mass system. The
resonant oscillation frequency of the hinged immovable plate is higher than that of the
hinged movable plate on condition that the ratio of elastic constants is identical and the
radius ratio held constant.

Figure 3. Non-linear free frequency responses of the annular plate with elastic constant ratio (c=0·5, 1·0 and
2·0), mass ratio (g=1·0) and radius ratio (R=0·1) under hinged movable boundary conditions.
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Figure 4. The comparisons of non-linear free frequency responses of the annular plate of radius ratio (R=0·1)
and mass ratio (g=1·0) between hinged movable—and immovable—boundary conditions.

5. CONCLUSIONS

The use of finite element method facilitated the solutions of the governing non-linear
differential equations of motion. The method can easily be extended to investigate free or
forced vibrations of a plate–mass under other boundary conditions. The non-linear
behaviour of the plate–mass system under consideration is found to be dependent upon
the specified elastic constant ratio. With the edge constraints considered, characteristics
exhibited by the responses of the plate are similar to that of a hard-spring Duffing’s system.
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APPENDIX A: NOMENCLATURE

r, u, z cylindrical co-ordinates used to describe the undeformed configuration of the plate
u, w radial and transverse displacement of the middle plate, respectively
t time variable
su , sr stresses in the tangential and radial directions, respectively
ou , or strains in the tangential and radial directions, respectively
au , aru , ar the elastic constants
c ratio of elastic constants= au /ar

n Poisson ratio=−aru /ar
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X, U non-dimensional transverse and radial displacement, respectively
R the ratio of the inner radius and the outer radius
D flexural rigidity of the plate= au · h3/12 · (au . ar − a2

ru )
Mc concentric rigid mass
r the material density of the plate
g the ratio of the concentric rigid mass and the mass of the plate with identical

volume=Mc /p · b2 · r · h
t time variable

APPENDIX B: DERIVATION OF EQUATIONS

The derivation of equations (5) and (6) is as follows. By substituting equations (10) into
equations (14), the strain energy can be written as

P'=
D
c gg 612 · w2

rr +
1
2

·
w2

r

r2 +
v
r
wr · wrr7 · ds+

12 · D
c · h2 gg 6c2 u2

r +
1
2

·
u2

r2 +
v
r
u · ur7 · ds,

(B1)

P0=
12 · D
c · h2 gg 6c2 ur · w2

r +
c
8

· w4
r +

v
2

·
u
r

· w2
r7 · ds,

and total kinetic energy of the plate can be written as

T= 1
2r · h · gg 01w

1t1
2

· ds+ 1
2Mc · 01w

1t7
2

br= b

. (B2)

From Hamilton’s principle, one has

d g
t1

t2

(T−P'−P0) · dt=0. (B3)

After lengthy calculation and vanishing the first variation of the action integral, one has
the following equation:

−g
t1

t2
62p · r · h g

b

a 0r ·
12w
1t21 · dw · dr7 · dt−g

t1

t2
6Mc · 012w

1t21 · 1wbb 7 · dt

−g
t1

t2
62p

D
c g

b

a 0c · r · wrrrr +2c · wrrr −
1
r

wrr +
1
r2 wr1 · dw · dr7 · dt

+g
t1

t2
62p

12 · D
c · h2 g

b

a

(c · ur · wr + c · r · urr · wr + c · r · ur · wrr ) · dw · dr7 · dt

+g
t1

t2
62p

12 · D
c · h2 g

b

a 6c2 w3
r +

3
2

c · r · w2
r · wrr + v · u · wrr + v · ur · wr1 · dw · dr7 · dt

+g
t1

t2
62p

12 · D
c · h2 g

b

a 6c · r · urr + c · ur +
c− v

2
w2

r + c · r · wr · wrr −
u
r1 · du · dr7 · dt
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+g
t1

t2
62p

D
c 0c · r · wrrrr + c · wrr −

1
r

wr1 · dwb
b

a 7 · dt

−g
t1

t2
62p

12 · D
c · h2 0c · r · ur · wr +

c
2

r · w3
r + v · u · wr1 · dwb

b

a 7 · dt

−g
t1

t2
62p

D
c

(c · r · wrr + v · wr ) · dwrb
b

a 7 · dt

−g
t1

t2
62p

12 · D
c · h2 0c · r · ur + v · u+

c
2

r · w2
r1 · dub

b

a 7 · dt=0. (B4)

For equation (A4) to hold, the integrands in the integrals have to vanish separately. The
governing equations are yielded as

12w
1t2 +

D
c · r · h 0c · wrrrr +

2 · c
r

wrrr −
1
r2 wrr +

1
r3 wr1

=
12 · D

c · r · h3 0cr ur · wr + c · urr · wr + c · urr · wr + c · ur · wrr

+
c
2

·
1
r

w3
r +

3
2

c · w2
r · wrr +

v
r
uwrr +

v
r
ur · wr1 , (B5)

c · urr +
c
r
ur + c · wr · wrr +

c
2

·
1
r

w2
r −

1
r2 u−

v
2

·
1
r

w2
r =0, (B6)

and the natural boundary conditions as

r · 0c · wrr +
v
r

· wr1 · dwrb
b

a

=0 (B7a)

6Dc · r · 0c · wrrr +
c
r

· wrr −
1
r2 wr1−

12 · D
c · h2 · r · wr · 0c · ur +

c
2

w2
r +

v
r

· u17dwb
b

a

+
Mc

2 · p 012w
1t21 · dwbb =0, (B7b)

r · 0c · ur +
v
r

· u+
c
2

w2
r1 · dub

b

a

=0. (B7c)

Using the non-dimensional variables, the governing equations (B5) and (B6) are converted
to the non-dimensional forms (4) and (5). Also by considering the physical conditions at
each end of the plate, from the natural boundary conditions (B7a), (B7b) and (B7c) , one
can yield the non-dimensional boundary conditions (6a), (6b) and (6c).


